

 1

SFDV3006
Concurrent Programming

Lecture 9 – Message Passing

Lecture 9 / Message Passing 2

Distributed Application Paradigms

object space

network services, object request broker, mobile agent

remote procedure call, remote method invocation

client-server

message passing

level of abstraction

high

low

Lecture 9 / Message Passing 3

The Message Passing Paradigm

� Message passing is the most fundamental paradigm for distributed
applications.
� A process sends a message representing a request.
� The message is delivered to a receiver, which processes the request,

and sends a message in response.
� In turn, the reply may trigger a further request, which leads to a

subsequent reply, and so forth.

Process A
Process B

a message

Message passing

Lecture 9 / Message Passing 4

Message Passing Paradigm
● The basic operations required to support the basic

message passing paradigm are send, and receive.
● For connection-oriented communication, the

operations connect and disconnect are also required.

● With the abstraction provided by this model, the
interconnected processes perform input and output to
each other, in a manner similar to file I/O. The I/O
operations encapsulate the detail of network
communication at the operating-system level.

● The socket application programming interface is
based on this paradigm.

Lecture 9 / Message Passing 5

Absence of shared memory

● In previous lectures interaction between
threads is via shared memory
● In Java, object references to shared memory

● Usually encapsulated in monitors
● In a distributed environment shared memory

does not exist
● Communication is achieved via passing

messages between concurrent / parallel
threads

Lecture 9 / Message Passing 6

Message Passing overview

● Main operations
● send
● receive

● Synchronization
● Synchronous
● Asynchronous
● Rendezvous

● Multiplicity
● one-one
● many-one
● many-many

� Anonymity
� anonymous message

passing
� non-anonymous

message passing

 2

Lecture 9 / Message Passing 7

Synchronous and Asynchronous Message Passing

● Synchronous Message Passing: sender of a
message blocks until it has been received

● Asynchronous Message Passing: sender does not
wait and messages which have been sent but not
received are buffered

● Synchronous and Asynchronous are both one-way
form of communication – messages are transmitted
in one direction only from sender to receiver.

● Rendezvous – two way message passing protocol
used for client-server interaction

Lecture 9 / Message Passing 8

Synchronous Message Passing

● Messages can be addressed directly to the
destination process or indirectly to some
intermediate entity.

● Messages are sent to and received from
channels

● A channel connects two and only two
processes.

● A single process can send to the channel and
a single process can receive from the channel.
This is one-one communication.

Lecture 9 / Message Passing 9

Synchronous Message Passing - contd

● send(e, c): Send e to channel c. Sending process is
blocked until channel received e.

● v=receive(c): receive into a local variable v from
channel c. The calling process is blocked until a
message is sent into the channel

● The above operations do not require messages to be
buffered

Channel c
Sender
send(e,c)

Receiver
v=receive(c)

one-to-one

Lecture 9 / Message Passing 10

Asynchronous Message Passing

● The send operation does not block
● Messages which have been sent but not received are held in

the message queue.
● Senders add messages to the tail of the queue and receivers

remove message from the head.
● Many senders send messages to a port but only a single

receiver may receive messages from it.
● Many-to-one communication

Port p

Receiver
v=receive(p)

Sender
send(e,c)
Sender[n]

send(en,p)
many-to-one

Sender
send(en,p)

Lecture 9 / Message Passing 11

Asynchronous Message Passing - contd

● Port: conceptually an unbounded FIFO queue
of messages

● Port is also known as mailbox
● Two operations:

● send(e, p): send value e to port p. Calling process
not blocked.

● v=receive(p): receive value into variable v from port
p. Calling process is blocked if no value is queued
to port

Lecture 9 / Message Passing 12

Rendezvous Message Passing

● Also called request-reply
● Used to support client-server interaction.
● Client processes send request messages to a server

process requesting the server to perform to some
service.

● The requests are queued to an entry in FIFO order.
● The server accepts requests from an entry and on

completion of the requested service sends reply
message to client.

● Many-one communication. Many clients may request
service from a single server.

● The reply to request is one-one communication.

 3

Lecture 9 / Message Passing 13

Rendezvous

Client Server

req=accept(entry)

res=call(entry,req)

reply(entry,res)

Request
message

Reply
message

suspended
perform service

Socket programming in Java or any other language is a good example
of rendezvous. Other examples include RPC, XML-RPC, RMI etc

Lecture 9 / Message Passing 14

Producer Consumer example

● In synchronous message passing the Consumer acts
like a server which receives items from Producer

● Notice that there is no buffer
● Producer has to communicate directly with the

consumer
● Implementation using sockets – with object

serialization to send the item to the consumer
● Consumer blocks until it receives from the producer
● Producer must know consumer host and port
●

Lecture 9 / Message Passing 15

Producer Consumer example

● In asynchronous message passing there is no direct
communication between the Producer and the Consumer

● Communication through a mailbox/port
● Producer deposits item into the mailbox
● Consumer receives from the mailbox
● Communication between the mailbox and consumer can be

implemented using Announcer – Listener architecture
● Producer, consumer and mailbox could be on different

machines
● Messages are held in a message queue in the mailbox
● Very widely used and implemented, scalable
● Basis for MOM (Message Oriented Middleware)
● IBM MQ Series is an example of a widely used messaging

server

